Главная

Биография

Приказы
директивы

Речи

Переписка

Статьи Воспоминания

Книги

Личная жизнь

Фотографии
плакаты

Рефераты

Смешно о не смешном





Раздел про
Сталина

раздел про Сталина

Секретное оружие третьего рейх - С.Н.Славин

- 14 -

   Решение описанного совещания свидетельствует, что именно наша страна является родиной идеи радиолокации. К этому времени идея радиолокации была осознана в нашей стране не только по своему целевому назначению, но и по методам осуществления.
   В принятом решении со всей ясностью подчеркнуто, что с помощью импульсов (порций) электромагнитных волн достаточно короткой длины волны можно не только обнаруживать на больших расстояниях воздушные цели, но и определять их координаты (зенитная стрельба, наведение истребительной авиации и т. п.). И мы не вправе поэтому забывать всех тех, кто содействовал столь ясной постановке проблемы в тот период, когда о ней ничего не было еще известно в мире.
   Слова «радиолокация» у нас в то время еще не было. Оно пришло к нам в 1941 году вместе с закупленными за границей станциями типа «Сон» и др.
   В период, когда в нашей стране начинались первые работы по радиообнаружению (радиолокации), никаких сведений об аналогичных работах, проводимых за границей, не было да и не могло быть, так как, если судить по официальной американской истории радара, на Западе подобных работ в то время не было вообще.
   Это вытекает из следующего. В официальной истории США об изобретении радара говорится: «В 1935 году по настоянию вице-адмирала Боуэна (в то время начальника технического бюро Морского комитета), конгресс США ассигновал Морской исследовательской лаборатории 100 000 долларов на научные работы. Это была первая сумма, отпущенная специально для развития радиолокационной техники».
   В той же официальной истории о радаре сообщается, что «первый контракт с промышленностью на изготовление шести станций для обнаружения самолетов был подписан в октябре месяце 1939 года».
   А вот в опубликованной в 1946 году журналом «Лук» статье двух американцев – Э. Реймонда и Дж. Хачертона, один из которых был длительное время советником в американском посольстве в Москве, – говорится:
   «Советские ученые успешно разработали теорию радара за несколько лет до того, как радар был изобретен в Англии». В этом они правы. У нас действительно еще в 1933 году были составлены конкретные планы исследований целевого назначения, а в 1934 году, как это будет сейчас видно, первые действующие станции для обнаружения самолетов были уже построены на принципе отраженной электромагнитной волны.
   19 февраля 1934 года Управлением противовоздушной обороны был заключен договор с Ленинградским электрофизическим институтом на проведение исследований по измерению электромагнитной энергии, отраженной от предметов различных форм и материалов. Этому же институту поручалось изготовить передатчик и приемник для проведения опытов по фактическому обнаружению самолета по отраженной от него волне.
   Были поставлены работы и в Харьковском физико-техническом институте (в лаборатории профессора А. А. Слуцкина), в ОКБ Управления ПВО РККА, на заводе «Светлана» и других предприятиях. Все работы в этом направлении проводились по заранее составленному плану и рассматривались как дело большой государственной важности.
   В результате уже к середине того же 1934 года отечественные специалисты имели прямые доказательства правильности метода. Были построены первые опытные станции, проведены их испытания, которые дали исключительно обнадеживающие результаты.
   В протоколах испытаниях прямо указывается, что цель обнаруживается на расстоянии порядка 50 километров и высоте 5200 метров. И эти показатели не являются предельными – при необходимости дальность обнаружения может быть повышена и до 75 километров.
   Из этих документов со всей очевидностью вытекает, что Советский Союз к середине 1934 года имел не только вполне сложившиеся, отработанные идеи в области радиолокации, но и фактический материал, подтверждающий правильность принципа действия.
   Об этом приходится говорить тем более, что до сих пор распространено мнение, будто радиолокация пришла к нам из-за границы.
   Если американцы пишут, что у них первый контракт на постройку шести опытных станций был заключен в 1939 году, то у нас в Советском Союзе первый договор с заводом на постройку пяти опытных станций электромагнитного обнаружения самолетов был заключен еще 26 октября 1934 году (заказы «Вега» и «Конус») – на пять лет раньше, чем в США. Конечно, эти станции и эти работы были не столь еще совершенны, как современная радиолокация, но факт остается фактом, и он говорит сам за себя.
   …Таким образом специалисты третьего рейха могут в лучшем случае занять почетное третье место в своих попытках создать установки, использующие электромагнитные волны для обнаружения и уничтожения воздушных целей. На первом месте, безусловно, стоят наши специалисты, на втором союзники в лице англичан и американцев. Причем последние, вполне вероятно, использовали и помощь своих заокеанских коллег.

Топливо из… «ничего»

   Всем известно, что в период Второй мировой войны немецкие химики и промышленники наладили производство всевозможных эрзац-продуктов. В частности, именно им мы обязаны появлению и распространению маргарина. Однако почему-то мало кто обращает внимание на то, какие усилия были предприняты деятелями третьего рейха для того, чтобы научиться синтезировать жидкое топливо буквально из ничего.
   В годы Великой отечественной войны довольно часто можно было видеть такую картину. Автомобиль останавливался возле поленницы, и шофер начинал заправлять машину березовыми или осиновыми чурками. Конечно, топки в обычном понимании этого слова в автомашине не было. Просто рядом с кабиной устанавливалась высокая колонка химического реактора, и древесину перегоняли в газообразное или жидкое топливо.
   Специалистам противоборствующих стран было отлично известно, что древесный, он же метиловый спирт или метанол, был впервые обнаружен в продуктах сухой перегонки древесины еще в 1661 году. Французский химик М. Бертло в 1857 году получил первый синтетический метанол омылением метилхлорида. В то время этим дело, собственно, и ограничилось. На практике метанол по-прежнему получали из подсмольных вод сухой перегонки древесины. Первый такой завод был построен в США в 1867 году, а к 1910 году таких заводов было уже около 120.
   Конечно, новым способом тут же заинтересовались в Германии, у которой никогда не было своих запасов нефти, а из полезных ископаемых в изобилии, пожалуй, лишь бурый уголь. Да и лесов не так уж много. Поэтому немецкие химики старались найти методы синтеза метанола из более доступного сырья, чем древесина. Так, в 1923 году в Германии был получен первый метанол на базе водяного газа (он же синтез-газ СО+Н2) с помощью заводской установки, дававшей до 20 тонн метанола в сутки. И уже год спустя немецкие промышленники начали экспорт синтетического метанола в США, где он продавался в три раза дешевле, чем полученный из древесины. В это время в Германии метанол даже называли иногда «органической водой» (organische Wasser).
   В годы Второй мировой войны метанол уже использовался в качестве моторного топлива для автомобилей (правда, в смеси с бензином). При почти вдвое меньшей, чем у бензина, теплоте сгорания, у метанола более высокое октановое число. Наличие кислорода в молекуле метанола обеспечивает более полное сгорание и уменьшение объема выхлопных газов. В них меньше оксида углерода, практически нет серы и, конечно, нет свинца.
   Но зато при работе на метаноле требуется увеличение объема топливных баков. Больше теплоты нужно подводить во всасывающую систему для испарения топлива, а это значит, что существующие системы двигателей внутреннего сгорания для работы на метаноле необходимо переделывать. Постоянная температура кипения метанола затрудняет запуск мотора при низких температурах, требует применения специальных мер, например, впрыскивания в запускаемый двигатель высоколетучей жидкости (эфира). Метанол разрушает слой полуды в топливных баках, а образующийся при этом гидроксид свинца забивает топливные фильтры и жиклеры карбюраторов. Увеличивается также коррозия двигателя и элементов топливной системы, причем особенно страдают детали из магния, алюминия и их сплавов. Кроме того, в метаноле быстро набухают и теряют герметичность многочисленные прокладки и уплотнения…
   Словом, автомобили тех лет были плохо приспособлены для работы на метаноле. И потому, как только появилась возможность, специалисты стали использовать традиционные бензин и солярку. Однако накопленный опыт не забылся. И по сей день конструкторы вместе с учеными обсуждают более широкие возможности применения «растительного горючего».
   Например, практичные японцы в качестве сырья для производства моторного топлива хотят использовать водоросли. Норвежцы считают перспективной для той же цели переработку хвойной древесины – той ее части, которая обычно идет в отходы: опилки, сучья, непосредственно саму хвою… В Новой Зеландии получены первые тонны горючего из апельсиновых корок, а в Мексике проведены успешные опыты по переработке кактусов!
   Итак, выясняется, что в принципе мотор можно питать практически любым органическим сырьем. В Бразилии, к примеру, даже самолеты летают «на растительном масле».
   Однако вся эта экзотика, как уже говорилось, не от хорошей жизни. В той же Бразилии практически нет своих месторождений нефти, вот и приходится выкручиваться… В такой ситуации, конечно, уж мало берутся в расчет и низкая теплота сгорания такого топлива, и его высокая стоимость.
   А в Германии времен третьего рейха синтетический бензин приходилось делать и из угля. Были попытки даже залить в автомобильный двигатель… воду! Причем для этого ее не разлагали на водород и кислород, расходуя на это большие количества энергии. Нет, воду пытались и пытаются добавлять в двигатель и без разложения, так сказать, в натуральном состоянии.
   Еще на заре автомобилизма было замечено, что в сырую погоду двигатели как будто работают лучше. Проведенные исследования показали: да, в моторное топливо можно добавлять до 10 процентов воды, и двигатель будет работать.
   Впрочем, как утверждают некоторые эксперты, двигатель при некоторых условиях может работать чуть ли не на чистой воде. Вот какую историю, например, рассказала читательница из г. Пензы Е. Ф. Палатова. Согласно ее данным, в США еще в период Первой мировой войны проводились испытания «горючего» для двигателей внутреннего сгорания, предложенного португальским эмигрантом Хуаном Андрэсом.
   Основную часть его составляла вода (пресная или соленая, безразлично), в которую добавлялась неизвестная жидкость, имевшая зеленоватый оттенок. В печати приводились случаи, когда изобретатель на глазах свидетелей готовил исходную смесь из медикаментов, купленных в ближайшей аптеке. Смешав их в ведре с водой, он заливал топливный бак и заводил двигатель. После регулировки игольчатого клапана, изобретатель добивался устойчивой работы мотора, дававшего выхлоп без цвета и запаха.
   Испытания проводились на автомобиле «Паккард» и на трехцилиндровом двухтактном судовом двигателе. Расход смеси составлял примерно 50 литров на 100 километров пути. Многовато, конечно, но не забывайте – и двигатели брались достаточно мощные, и топливо стоило баснословно дешево.
   Будучи по образованию инженером-электрохимиком, Палатова вместе с коллегами попыталась разгадать ребус эмигранта. «Итак, все поршневые двигатели работают за счет газообразной массы высокого давления, которая поступает в цилиндр извне (сжатый водяной пар), либо образуется внутри цилиндра вследствие сгорания жидкого топлива, – рассуждала она. – В первом случае мы имеем место с паровыми машинами, во втором – с двигателями внутреннего сгорания. Те и другие имеют свои преимущества и недостатки».
   Привлекательность паровой машины состоит в том, что рабочее тело – водяной пар – не отравляет окружающую среду. Естественно возникает вопрос: есть ли возможность создать непосредственно внутри цилиндра высокое давление пара? Андрэс ответил утвердительно: «Да, если использовать энергию взрывчатого вещества… «
   Действительно, при взрыве даже небольших количеств взрывчатки образуются большие объемы газов и выделяется много тепла. Энергия взрыва и тепла может довести воду до газообразного состояния с высоким давлением. «Очевидно, Андрэс в качестве взрывчатого вещества выбрал нитроглицерин, – пишет Палатова. – Я полагаю так, поскольку в виде однопроцентного спиртового раствора нитроглицерин можно купить в аптеке, где он продается в качестве лекарства, расширяющего кровеносные сосуды».
   В чистом виде нитроглицерин – тяжелая маслянистая жидкость, застывающая при температурах ниже 13оС. В воде растворяется плохо: всего 1,8 г на литр. Зато хорошо растворим в спирте – до 250 г на литр. При нагреве до 260°С и детонации взрывается. Причем процесс взрыва мгновенно охватывает всю массу нитроглицерина, переводя все молекулы разом в некую смесь газов.
   Как показывает анализ, смесь газов, образующихся при взрыве, содержит от 58 процентов углекислого газа, 20 процентов водяного пара, 18 процентов азота и 4 процента кислорода. Все газы абсолютно нетоксичны, являются природными составляющими атмосферы Земли.
   «Полагаю, в связи с вышесказанным, что „горючее“ Анрэса представляло собой водную эмульсию нитроглицерина, – заканчивает свое письмо Палатова. – Он готовил ее, приливая к воде смесь аптечного спиртового раствора нитроглицерина с эмульгатором. Причем эмульгатором могло служить жидкое калийное ( „зеленое“) мыло, которое также продается в аптеках. Так и получалась та зеленоватая жидкость, которую Андрэс вводил в воду перед ее заливкой в топливный бак, подобрав экспериментально-опытным путем количественное соотношение всех компонентов».
   Как видите, ребус Андрэса оказался не столь уж сложен. И если его разгадал человек без особой подготовки, то, наверное, германские химики, издавна пользовавшиеся высокой репутацией во всем мире, и подавно справились с этой задачей. Тем более что перед войной, как показал даже беглый поиск, было немало публикаций на эту тему. Были проведены и эксперименты, целью которых являлся поиск оптимального состава горючего и наработка практического опыта по его применению. Однако этим экспериментам так и не суждено было выйти за пределы полигона. Почему? Ведь Германия, как уже неоднократно говорилось, остро нуждалась в замене натуральных нефтепродуктов синтетическими.
   Причин тому несколько. Назовем хотя бы основные. В принципе затолкать в двигатель можно что угодно, даже нафталин – подобные опыты проводились еще в 20-е годы. Весь вопрос, насколько это выгодно и рационально?
   Опыт же показал, что, если даже в двигатель добавляют незначительное количество воды, это приводит к резкому ухудшению его характеристик и долговечности. Кроме того, нитроглицерин – достаточно капризная, небезопасная в обращении жидкость. Не случайно небезызвестный Альфред Нобель потратил немало времени и сил прежде, чем смог получить динамит – довольно безопасную в обращении взрывчатку. В общем, Нобелевскую премию за использование нитроглицериновых смесей в качестве горючего не удалось пока получить никому. И те же химики третьего рейха предпочли пойти другим путем – стали получать синтетический бензин, например, из угля.
   Был у них в запасе и еще один способ. Нефть, оказывается, можно добывать прямо из… воздуха!
   Надо сказать, что история этого рецепта тоже достаточно давняя. Еще в 1908 году русский химик Е. И. Орлов обратил внимание на возможность синтеза нефтяных углеводородов из оксида углерода и водорода. Эта смесь называется еще водяным газом (или синтез-газом) и в достаточных количествах содержится в атмосфере.
   Спустя несколько лет после Первой мировой войны этот способ был опробован на практике. Кайзеровская Германия оказалась отрезанной от природных источников нефти, и вот немецкие ученые К. Фишер и А. Тропш в 1922 году отработали технологию получения синтетических жидких углеводородов на практике.
   Правда, водяной газ они решили поначалу получать не из воздуха, так как это оказалось технически слишком сложно, а из бурого угля. Синтез углеводородов осуществлялся при контакте этого газа с железоцинковыми катализаторами при высокой температуре. В 1936 году были введены в действие первые промышленные установки.
   Всего было запущено 14 установок общей производительностью около миллиона тонн топлива в год. Они успешно проработали до конца Второй мировой войны.
   Когда же послевоенная Германия получила доступ к дешевой природной нефти, постепенно все европейские и азиатские установки по производству синтетического топлива были остановлены или переведены на выпуск другой продукции. Зато в ЮАР, которая подверглась нефтяному эмбарго со стороны мирового сообщества и где к тому же добыча угля обходится чрезвычайно дешево, в середине 1980-х годов производилось около 4 миллионов тонн жидких углеводородов ежегодно.
   И лишь в наши дни идея получения топлива из воздуха, а точнее, из содержащегося в нем диоксида углерода, похоже, приобретает особую остроту. Огромное количество сжигаемого на планете топлива грозит образованием так называемого «парникового эффекта». Из-за повышенного содержания углекислого газа в атмосфере часть солнечных лучей, которой полагалось бы отразиться от поверхности планеты и уйти назад в космическое пространство, теперь задерживается. А это, как полагают некоторые эксперты, в конце концов способно привести к всеобщему потеплению климата на Земле.
   На первый взгляд, ничего страшного. Ну станет теплее на градус-другой. Что плохого? Но такое потепление, как показывают расчеты, может привести к тому, что значительная часть нынешней суши окажется затопленной. Вот ученые и предлагают способ, как зло обратить в благо. Прежде всего из атмосферного воздуха нужно выделить излишний диоксид углерода.
   Уже сегодняшняя технология предлагает для этого несколько способов. Составляющие воздуха можно разделять при помощи пористых мембран, вымораживать или соединять в определенных условиях с газообразным аммиаком. Аммиак, реагируя с диоксидом углерода, образует карбонат аммония. Этот белый кристаллический порошок легко отделяется от газообразных компонентов чисто механическим путем – в аппаратах типа циклонов или центробежных сепараторов. Воздух, уже не содержащий углекислого газа, возвращается в атмосферу. Вслед за этим и карбонат аммония легко разлагается при нагревании на диоксид углерода и аммиак. Аммиак снова идет в дело, используется для улавливания новых порций углекислого газа.
   Полученный диоксид углерода разлагают на оксид углерода (угарный газ) и кислород. Эта реакция требует больших затрат энергии. Поэтому, по всей вероятности, ее будет выгодно производить лишь при наличии дешевых энергетических источников. Такими источниками могут стать атомные реакторы или термоядерные установки. Здесь при температуре около 5000°С в присутствии катализаторов и будет получен оксид углерода. Освободившийся кислород опять-таки будет отправлен в атмосферу, а оксид углерода будет соединен с водородом. Полученные углеводороды в дальнейшем могут быть использованы в химическом производстве примерно так же, как сегодня используются производные нефти.
   В оклахомской компании «Синтролиум», основанной в 1978 году братьями Марком и Кеннетом Эйдже, работают пока всего 16 человек. Однако контактов с компанией настоятельно ищут такие гиганты нефтяной империи, как «Шелл», «Эксон» и «Тексика». С последним, кстати, «Синтролиум» как раз и заключил соглашение о совместном производстве продукта под названием синкрот по цене 15 долларов за баррель.
   Конечно, дороговато, однако уже сейчас ясно, что дальнейшим усовершенствованием технологии цену можно существенно снизить, и тогда синкрот станет дешевле натуральной нефти. А это весьма интересно, поскольку под новым названием скрывается синтетическая нефть, производимая из природного газа. А запасы его в пересчете на этот самый синкрот оцениваются как минимум вдвое больше, чем ископаемой нефти.
   Американские инженеры взяли за основу ту же технологию, истоки которой восходят к началу нашего века.
   Компания «Синтролиум» усовершенствовала этот процесс. Теперь для получения угарного газа вместо кислорода используется атмосферный воздух, что и привело к значительному удешевлению продукта. На опытной установке, работающей с 1990 года, производительность составляет 2 барреля в день. Но разработана и продается технология производства 2000 баррелей в день и заканчивается подготовка документации на строительство установки производительностью 5000 баррелей в день.
   Компания убеждена, что будущее принадлежит таким сравнительно небольшим, компактным установкам, которые можно устанавливать в непосредственной близости от потребителя и получать горючее почти что из воздуха.
   Большим преимуществом синкрота является то обстоятельство, что он не содержит серы и ароматических соединений, от которых приходится с великими трудами избавляться при работе с природной нефтью.
   Кроме того, как показали последние исследования, природного газа на Земле в сущности гораздо больше, чем дают стандартные оценки. Они ведь не учитывают запасов так называемого твердого газа. А многие геологи всерьез полагают, что дно Мирового океана подстилают гидраты углеводородных газов – соединения, в которых молекулы метана заполняют пустоты в решетке кристаллического льда. Толщина залежей достигает полукилометра, что, согласитесь, весьма немало, учитывая площадь Мирового океана.
   Только в Северной Атлантике, где работала группа доктора Дж. Бикенса из Мичиганского университета, оказалось, что на сравнительно небольшом участке дна льда находится до 35 миллиардов тонн метана. Вдобавок здесь же содержится до 7 процентов углерода – так что налицо все необходимое сырье (плюс атмосферный воздух) для производства синтетической нефти.
   В общем, получается, что нацистские химики не довели начатое ими дело до логического конца. Быть может, потому, что не очень хотели помогать правящему режиму? Так или иначе, но ими оказался упущен и еще один шанс продлить агонию третьего рейха.
   Обратите внимание, жители Европы, в том числе крупных городов и нашей страны, уже стали привыкать к грузовикам с красными газовыми баллонами вместо бензобаков. Появились и первые «Волги»-такси, работающие на газе. И как показывает накопленный опыт, природный газ вполне может составить конкуренцию традиционному бензину и дизельному топливу. У газа выше октановое число, он меньше загрязняет воздух токсичными газами при сжигании в цилиндрах мотора, не портит смазочного масла…
   Все это, кстати, было известно довольно давно. На парижской выставке 1878 года Н. Отто и Э. Ланген продемонстрировали газовый автомобиль в действии. Он, правда, оглушал окружающих отчаянным треском, зато потреблял относительно немного топлива.
   Так что в данном случае новое – это хорошо забытое старое. И стоит ли удивляться, что к настоящему времени только в нашей стране полмиллиона автомобилей работает на природном газе? Скорее стоит удивляться другому – почему их до сих пор так мало?.. В качестве горючего можно использовать и «биогаз». Источником для его получения служат отходы, в большом количестве – до 500 миллионов тонн в год! – образующиеся на животноводческих фермах, птицефабриках, а то и просто на полях страны.
   Производство биогаза весьма несложно. В специальный бак – метантенк загружают органические отходы, добавляют немного воды и специальную анаэробную закваску. Теперь нужно лишь поддерживать в метантенке плюсовую температуру. Все остальное бактерии сделают сами: проведут необходимый процесс ферментации, переработают отходы в биогаз и шлам. Биогаз, как показывает анализ, на 50–70 процентов состоит из обычного метана, а шлам представляет собой прекрасное органическое удобрение.
   Сама по себе такая неприхотливая технология, конечно, не представляет собой ничего принципиально нового. Некоторые ученые считают, что примерно такие же процессы превращения органических веществ в метан идут и в недрах Земли.
   По подсчетам экономистов, в ближайшие 20–25 лет в Советском Союзе, по уже отработанным технологиям можно производить ежегодно 15–18 миллиардов кубических метров полезного газа. Потенциальные же возможности еще выше. Ведь в каждой индустриально развитой стране, как показывает расчет, приходится около двух тонн органических отходов на одного человека в год, что соответствует возможности получения 1000 кубических метров биогаза. Для справки добавим, что в настоящее время ежегодно городской житель тратит на приготовление пищи 100 кубических метров бытового газа, что эквивалентно 150 кубическим метрам биогаза. Таким образом практически все население может быть обеспечено газом!
   И это еще не все. Сам процесс получения биогаза, по мнению специалистов, таит в себе немало резервов. В частности, можно ускорить процесс брожения. Например, если часть сброженной в метантенке биомассы вывести из него и смешать с вновь поступающим по трубам сырьем, разложение органических веществ начнется еще до того, как они попадут в метантенк. Это дает возможность сократить основной цикл с пяти суток до одних. А если микробиологи выведут высокоактивные виды микроорганизмов, то весь цикл реакций можно будет, вероятно, довести до нескольких часов.
   Биогаз можно получать не только из отходов, но и со специально предназначенных для этого плантаций. А чтобы не занимать полезные площади на суше, такие плантации логично расположить в море.
   Ученые полагают: для промышленных плантаций такой энергетической биомассы подходят лиманы Черного моря, Каспийское и Аральское моря и другие водоемы нашей страны. При урожае растений 20 граммов на квадратный метр водной поверхности в сутки, за летний вегетационный период с одного гектара можно собирать до 24 тонн биомассы. Ее переработка в метантенках даст 12 тысяч кубических метров газа. Такие исследования активно ведутся по программе «Биосоляр».
   Представьте себе узкий бассейн, над которым ослепительно сияют огромные лампы. На поверхности воды плавают притопленные корытца из пластика. В них вода заметно темнее и словно бы гуще, чем вокруг. Во всяком случае, такое складывается впечатление, хотя, со слов сопровождающего нас руководителя лаборатории, вода самая обыкновенная – из водопровода, только с добавками питательных солей.
   Но вот он наклонился и, держась за поручень, зачерпнул пробиркой из корытца. На глаз зеленоватое содержимое пробирки казалось совершенно однородным. Лишь под микроскопом удалось разглядеть, что вода кишит крошечными организмами.
   Эти одноклеточные водоросли и есть основной «механизм» установки. Именно они потребляют питательные вещества, содержащиеся в субстрате, и под ярким светом быстро размножаются. Время от времени «бульон» из корытец разреживают, откачивая излишек в уже знакомый нам метантенк. Здесь идут реакции брожения, и вот, пожалуйста, из металлического баллона начинает выходить биогаз.
   В лаборатории подсчитали: если выстелить подобными корытцами, или, как их здесь называют, фотосинтетическими блоками, поверхность Аральского моря, то можно обеспечить всю нашу страну топливом, которое даст тепло и электроэнергию для всех нужд. Фантастика?.. Пока – да. Но фантастика, основанная на точном расчете. Исследователи показывают карту земного шара, где отмечены наиболее выгодные места для создания подобных плантаций. По оценкам, с них можно собирать урожаи более 300 миллиардов тонн условного топлива в год. Это примерно в 15 раз больше, чем понадобится человечеству в 2000 году!
   И наконец, бактерии можно использовать и для повышения эффективности обычных нефтепромыслов. Мы уже знаем, что при нынешних методах добычи значительная часть нефти так и остается в земных недрах. А вот если запустить в отработавшую свое скважину работников-невидимок, то они очень быстро переведут оставшуюся нефть в биогаз, и старые месторождения обретут новую жизнь.

Золото для партии

   Быть может, о нем, этом дьявольском металле, и не стоило бы говорить отдельно. Как вы убедитесь сами из изложенного ниже, тема вроде бы несколько выходит за рамки данной книги. И все-таки…
   «Пишу вам вот по какому поводу. Вышел у нас тут спор. Один из моих одноклассников вычитал, что нацистское золото, которое не столь давно было обнаружено в швейцарских банках, в основном получено в результате переплавки зубных коронок, мостов, изъятых у узников концлагерей, а также золотых украшений, отнятых у населения оккупированных стран. Другой стал ему возражать: зачем это, дескать, немцам надо было? Культурная высокоразвитая нация, отличные химики… Они еще в 20-е годы научились добывать золото из морской воды, а то и просто пускают на переработку сточные воды. А потому и сумели так быстро восстановить свое хозяйство и после Первой мировой войны и после Второй. Это только мы, валенки, по-прежнему продолжаем добывать золото по старинке – из золотоносных песков да горной породы…»
   Ну а дальше в читательском письме следовала дежурная просьба ответить, кто из двух спорщиков прав.
   Прочел я это послание и задумался: коротка все-таки людская память. Еще ходят по земле последние выжившие узники тех страшных лагерей, а молодое поколение уже спорит, было то или не было… Ну что же, давайте попробуем проследить хотя бы частично историю нацистского золота.
   Доцент Тамбовского института химического машиностроения Евгений Капитонов как-то рассказал такую историю.
   Двадцать восьмого июня 1919 года был подписан Версальский договор, которым Германия обязывалась выплатить победителям репарации. В мае 1921 года на Лондонской конференции была установлена общая сумма – 132 миллиарда золотых марок. Сумма эта была непомерной. Она соответствовала 50 000 тонн золота, что составляло в то время почти две трети всего мирового запаса этого металла. Где взять столько?
   И тогда на выручку своей родине поспешил известный немецкий физико-химик Фриц Габер. Он был своеобразным явлением в немецкой науке. Человек, о котором позже скажут, что он спас миллионы людей от голодной смерти и сотни тысяч из них обрек на смерть от удушья. Специалист, получивший Нобелевскую премию за разработку промышленного метода синтеза аммиака, необходимого для производства минеральных удобрений, ничтоже сумняшеся организовал и производство ядовитых газов для военных целей, за что, собственно, и был включен в число 895 главных военных преступников, прегрешивших против законов и правил войны, международных обычаев и святости заключенных договоров в период с 1914 по 1918 год. Тем не менее Фриц Габер считал себя «хорошим немцем» и помощь Германии в выплате репараций расценивал как крайне важную задачу и для немецкой науки, и для себя лично.
   Габер размышлял о даре, которым, согласно древнему мифу, бог Дионис наградил царя Мидаса. Научившись превращать азот воздуха в аммиак, и сам химик в известной мере получил такой дар. Но какой триумф его мог бы ожидать, если бы он открыл новый источник золота, который насытил бы золотую жажду победителей и вернул бы отечеству былое могущество и достоинство.
   В средние века в Германии добывали самородное золото из песчаных наносов в ручьях. Позднее золотоискателей привлекали реки Калифорнии и Аляски, Сибири и Австралии. Но куда деваются золотоносные стоки этих рек? В Мировой океан! Ученый знал работы, посвященные изучению содержания золота в океанской воде. Если считать наиболее достоверными данные авторитетного шведского ученого Сванте Аррениуса, полагавшего, что в тонне воды содержится около 6 миллиграммов золота, то в Мировом океане должно находиться… 8 миллиардов тонн драгоценного металла. Что значит взять из него всего 50 000 тонн – никто того и не заметит?
   Здесь мы должны на время приостановить наше повествование, чтобы восстановить справедливость. Вовсе не Габер первым задумался о возможности извлечения золота из морской воды.
   В 1872 году в одном из английских химических журналов появилась статья Е. Зонштадта, в которой автор сообщал, что он взял пробу воды в мелководной бухте Рамси у северо-восточного берега острова Мэн в Ирландском море. При анализе было обнаружено золото в расчете менее 67 миллиграммов на тонну воды. Когда встречается такая «неровная» цифра, легко подумать, что точное значение отличается от нее не намного – менее чем на единицу. Именно так и было понято сообщение Зонштадта, и статья его произвела сенсацию среди химиков, геологов, океанологов.
   Для того чтобы понять существо сенсации, достаточно вспомнить, что богатейшие южноафриканские золотые руды содержат всего 10 граммов золота на тонну руды.
   Добыча золота из речного песка дражным способом экономически оправдана уже при содержании 150 миллиграммов золота в тонне песка. При этом гидрометаллургическая переработка песка требует много труда и времени.
   В морской воде золото, как и предполагали химики, находится в растворенном состоянии – в виде солей золотохлористоводородной кислоты. В этом случае его добыча становится экономически оправданной даже при содержании всего нескольких миллиграммов в тонне воды. Таким образом, данные Зонштадта говорили о возможности использования практически неистощимого источника золота.
   Нужно было лишь найти эффективный способ извлечения его из морской воды и проверить в разных местах Мирового океана действительное содержание золота.
   Работы в двух этих направлениях начали развиваться очень бурно. За полвека было создано около 30 различных способов извлечения золота из морской воды, на которые в разных странах Европы и в США было выдано в общей сложности 49 патентов. Некоторые изобретатели были настолько уверены в действенности разработанных ими методов, что спешили запатентовать их во всех ведущих странах Запада. Так, О. Нагель получил 15 патентов в Германии, Франции, Англии, Австрии, Норвегии, Нидерландах и Дании, причем 30 января 1916 года он зарегистрировал одновременно четыре заявки в трех странах.
   Жажда золота была так велика, что жертвой ее чуть не стала медная обшивка днищ кораблей и свай причалов. Дело в том, что медь способна вытеснять золото из его солей. В этом случае можно ожидать, что вытесненное из раствора золото осядет на медной обшивке. В 1896 году Ливерсидж опубликовал статью, где сообщил, что исследования подтвердили наличие золота на медных листах обшивки, но выделение его из меди совершенно нерентабельно.
   Появился ряд публикаций и по содержанию золота в морской воде. X. Мюнстер исследовал в 1892 году воду из Христиания-фьорда и нашел в ней 5–6 миллиграммов золота на тонну. Пак при исследовании воды, взятой у побережья Калифорнии, нашел 30 миллиграммов, Дон – 4,5 миллиграмма, Вагонер – 11–16 миллиграммов. Кох, изучавший воды Средиземноморья, приводит цифру 1,5 миллиграмма. Ливерсидж при исследовании проб, взятых у побережья Австралии, получил значение 30–60 миллиграммов. Данные, полученные в разных местах Мирового океана, были весьма обнадеживающими.
   Правда, в Германии тогда же была издана и небольшая книга для чтения по неорганической химии для учащихся, где говорилось, что в тонне океанской воды содержится всего около 0,2 миллиграмма золота, но опьяненные надеждой исследователи не обратили на это никакого внимания. Точно так же весьма сдержанно были приняты сообщения ученых, которые нашли лишь доли миллиграмма золота в тонне воды.
   Через 20 лет после появления своей первой статьи Б. Зонштадт вновь выступил с небольшой заметкой, в которой возражал против ложного понимания названного им ранее содержания золота. Он писал, что вновь взял в качестве пробы бочку воды у восточного побережья Англии в районе Лоустофта и нашел, что содержание золота в ней не просто менее 67 миллиграммов, но намного меньше. Но и эта заметка не привлекла ничьего внимания. Да и о каком доверии к ней можно было говорить, если величина пробы для микрохимического исследования измерялась бочкой неизвестного объема, а о найденном в ней количестве золота говорилось только, что его намного меньше 67 миллиграммов?
   Таким образом, за полвека после первой публикации Зонштадта появилось довольно много питающих самые радужные надежды сведений о содержании золота в морской воде и идей, как его извлечь. Не было лишь самого золота.
   А дело было в том, что все методы его извлечения разрабатывались на искусственной морской воде, которая приготовлялась посредством растворения в дистиллированной воде нужного количества солей с добавлением золота в количестве, соответствующем упомянутым выше публикациям. Конечно, эта жидкость весьма существенно отличалась от настоящей морской воды с ее микроорганизмами, илом и пр.
   К тому же начавшаяся Первая мировая война помешала дальнейшему развитию исследований.
   Когда же война закончилась, Габер выступил со своим предложением. В морозный январский день 1922 года он собрал в своей личной лаборатории дюжину молодых сотрудников и прочел им увлекательную лекцию о хозяйственном значении современной океанологии и о возможной перспективе добычи золота из океана.
   Слушатели с восторгом восприняли эту идею. Уже в начале февраля во вновь организованном отделе института с таинственным обозначением «отдел М» закипели подготовительные работы. Сначала были проверены все существовавшие методы, разработанные для извлечения золота из воды.
   После многих экспериментов был выбран усовершенствованный сотрудниками отдела М экстракционный метод с фильтрацией осадка через песочный фильтр. Метод Габера был постепенно доведен до такой степени совершенства, что позволял обнаружить даже миллиардные доли грамма драгоценного металла.
   Для переработки воды требовалось создать специальные корабли с мощными насосными установками. Консультации со специалистами судоверфи «Вулкан» позволили установить, что строительство и эксплуатация таких судов будут экономически оправданными, если в 1 кубометре воды содержится не менее 1–2 миллиграммов золота. Таким образом, результаты расчетов судостроителей были обнадеживающими.
   На очереди встала организация морских исследований. Габер хотел взять пробы в открытом море, вдали от берегов, где меньше примесей, мешающих произвести точный анализ. Проблема была непростой, поскольку во время войны Германия потеряла 90 процентов своего торгового флота и лишилась права выхода в Атлантический океан.
   Правда, в июне 1920 года были установлены картельные связи между германскими судоходными компаниями и гарримановской компанией в США, что привело к оживлению германского судостроения и судоходства. За два года для обслуживания линии Гамбург – Америка были построены лайнеры «Гинденбург», «Людендорф», «Тирпиц», «Карл Легин» и другие. Тем не менее понадобилось содействие министра иностранных дел Ратенау, чтобы во время летних рейсов 1922 года оборудовать химическую лабораторию в одной из кают парохода «Ганза» и получить места на судне для пяти ее сотрудников. Финансирование экспедиции взяли на себя металлобанк и немецкое управление по распределению золота и серебра во Франкфурте-на-Майне.
   Габер и его помощники были полны энтузиазма. Их покоряло величие взятой задачи – добыть 50 000 тонн золота, в то время как годовая добыча его во всем мире в первой четверти 20-го столетия ни разу не превышала 708 тонн.
   Стены лаборатории были заняты стеллажами, на которых стояли двухлитровые банки со специальными герметичными крышками. Эти банки были изготовлены из стекла, полностью очищенного от малейших следов золота, чтобы они не исказили данных эксперимента. Тысячи проб воды были взяты и с поверхности, и с самых различных глубин в разных точках Северной Атлантики. Но лишь две из них содержали в среднем 8,5 миллиграмма золота. В остальных пробах его содержание измерялось числом с двумя-тремя нулями после нуля целых. И чем точнее становились методы анализа, тем меньшее содержание золота они показывали. Но, может быть, Северная Атлантика содержит золота меньше, чем другие области Мирового океана? Или все предшественники, включая Аррениуса, заблуждались?
   Исследование воды Гольфстрима на пути в Нью-Йорк дало пять нулей после запятой.
   Когда «Ганза» возвращалась к родным берегам, Габера все больше мучил вопрос: «Не следует ли ему вообще отказаться от своего плава?» Но вскоре он уже на борту «Вюртемберга» вновь занимается отбором проб в Южной Атлантике. Результат тот же. Летом 1924 года приписанные к Копенгагену датские исследовательские суда «Дана» и «Готхааб» отправились в Исландию и к берегам восточной Гренландии. Под руководством профессора М. Кнудсена для Габера там были взяты пробы воды и полярных льдов. При исследовании их было сделано неожиданное открытие – полярные льды содержали золота в десять раз больше, чем незамерзшая морская вода (до 0,047 миллиграмма на тонну). Но и эта концентрация была слишком мала для промышленной переработки. Ничего обнадеживающего не дала и датская экспедиция профессора Красса, в январе 1925 года начавшая систематические исследования залива Ла-Платы.
   В начале мая 1925 года измерительное судно «Метеор» отправлялось в Южную Атлантику, чтобы в соответствии с планом доктора Мерца, возглавлявшего экспедицию, провести всесторонние океанологические исследования от Антарктики до Северного полярного круга. На борту корабля находились ученые многих профессий. В последний момент в состав экспедиции был включен и доктор Квазебарт, сотрудник отдела М.
   Сегодня некоторые специалисты склонны считать поиски золота в море чуть ли не главной задачей «Метеора». Например, Г. Дубах и Р. Табер в своей книге «Сто вопросов об океане» пишут: «Одной из главных целей многочисленных экспедиций судна „Метеор“, неоднократно бороздившего Северную и Южную Атлантику с 1924 по 1928 год, было изучение возможности выделения золота из морской воды».
   Однако результаты работы экспедиции по части поисков воды с достаточно большой концентрацией золота оказались тоже полностью негативными.
   В 1925 году Габер предпринимает еще одну попытку найти золото. Ведь в море оно выносится реками. Может быть, в золотоносных реках вода содержит его достаточно много?
   Рейн был золотоносной рекой. За сто лет до описываемых событий в великом герцогстве Баден чеканили монету из золота, добытого в его отложениях.
   Габер внимательно исследовал пробы рейнской воды, взятые в районе Карлсруэ и Леверкузена. И здесь его ждали сразу две неожиданности. Во-первых, золота оказалось ничтожно мало. Тысячу кубометров воды в секунду несет Рейн в Атлантический океан. Но лишь 200 килограммов золота в год выносят его волны. Во-вторых, обнаружилось, что то немногoe количество драгоценного металла, которое переносят воды Рейна, содержится не только в донных наносах и иле, но и плавает в воде. По-видимому, частички золота там измельчены до состояния золы.
   Но почему же многие исследователи публиковали столь обнадеживающие данные? Габер высказал по этому поводу достаточно логичное предположение. Исследователи, определяя содержание золота в воде, учитывали возможность потерять часть золота вследствие неполного его осаждения в процессе анализа. Но они не принимали во внимание, что, имея дело лишь с сотыми долями миллиграмма этого металла в тонне воды, необходимо учитывать и возможность вынесения в пробу небольшого количества золота с применяемыми реактивами, в которых оно служит случайной примесью, с инструментом или лабораторной посудой.
   В 1927 году Ф. Габер опубликовал статью, в которой он подвел итоги всех работ, посвященных поискам золота в океане. «Возможно, что однажды найдут где-нибудь место в океане, где концентрируются частички благородного металла. Я же отказался от этих сомнительных поисков булавки в стоге сена».
   Разочарование, постигшее Габера и его коллег, оказалось столь сильным, что еще в течение нескольких десятилетий они не предпринимали попыток ответить на вопросы, оставшиеся «за кадром». Почему, например, полярные льды содержат золота в десять раз больше, чем окружающая их вода? Куда исчезло золото из Рейна? И откуда, наконец, взял Е. Зонштадт число 67 миллиграммов, породившее столь много надежд и разочарований?
   Вместо этого нацисты отыскали свой и, как им казалось, весьма перспективный источник поступления золота в третий рейх.
   Все тридцать с лишним главных нацистских концлагерей были по существу фабриками смерти, где погибли от пыток и голода миллионы узников.
   Сколько же всего несчастных, ни в чем не повинных людей, в большинстве своем евреев, а также русских военнопленных, было уничтожено в одном только Освенциме! Общее число установить невозможно. Упоминавшийся нами Хесс в своих показаниях назвал цифру порядка «2 миллиона 500 тысяч расстрелянных, удушенных газом и сожженных и еще по меньшей мере 0,5 миллиона погибших от голода и болезней, что в сумме составляет около 3 миллионов человек». Позднее в ходе суда над ним в Варшаве он уменьшил эту цифру до 1 миллиона 135 тысяч человек. Советское правительство, которое провело тщательное расследование злодеяний в Освенциме после того, как в январе 1945 года его захватила Красная Армия, приводит цифру 4 миллиона человек. Рейтлингер, основываясь на собственных тщательных подсчетах, ставит под сомнение даже цифру 0,75 миллиона истребленных в газовых камерах. По его данным, в газовых камерах погибли 600 тысяч человек, к которым добавляется еще «неопределенная часть пропавших без вести», порядка 300 тысяч человек, которые либо были расстреляны, либо умерли от голода и болезней. По любым подсчетам число это весьма внушительно.
   Трупы сжигали, но золотые коронки на зубах сохранялись и, как правило, извлекались из пепла, если их не успевали присвоить солдаты специальных подразделений, перебиравшие горы трупов. Золото переплавлялось в слитки и вместе с другими ценностями, отобранными у обреченных евреев, направлялось в рейхсбанк в соответствии с секретным соглашением между Гиммлером и президентом банка и заносилось на счет СС под шифром «Макс Хейлигер». Помимо золота, сорванного с зубов, из лагерей смерти поступали золотые часы, серьги, браслеты, кольца, ожерелья и даже оправы от очков, поскольку евреям рекомендовалось «при переселении на новое место жительства» забирать с собой все ценности. Были собраны также большие запасы ювелирных изделий, особенно бриллиантов и серебряной посуды, не говоря уже о толстых пачках банкнот.
   Рейхсбанк был буквально переполнен поступлениями на счет под шифром «Макс Хейлигер». Подвалы Рейхсбанка были забиты «трофеями» еще в 1942 году, и его алчные директора стали искать возможности заложить их в муниципальные ломбарды, чтобы получить под них наличные. В одном из писем Рейхсбанка в берлинский муниципальный ломбард, датированном 15 сентября, упоминается «вторая партия поступлений». Начинается оно так: «Мы направляем вам следующие ценности с просьбой найти им наилучшее применение». Далее приводится длинный перечень ценностей по видам, в который включено: 154 пары золотых часов, 1601 пара золотых серег, 132 бриллиантовых кольца, 784 пары серебряных карманных часов и 160 различных зубных протезов, частично изготовленных из золота. К началу 1944 года берлинский ломбард был переполнен поступающими сплошным потоком крадеными вещами и поэтому информировал рейхсбанк о том, что принимать ценности далее не в состоянии. Когда союзники одержали победу над Германией, они обнаружили в некоторых заброшенных соляных шахтах, где нацисты спрятали часть своих документов, и «трофеи», в том числе хранившиеся на счету под шифром «Макс Хейлигер». Количество их позволило заполнить три больших сейфа во франкфуртском филиале Рейхсбанка.
   Знали ли банкиры об источниках этих уникальных вкладов? Директор управления драгоценных металлов Рейхсбанка показал в Нюрнберге, что и он и его служащие обратили внимание на то, что многие партии золота поступали из Люблина и Освенцима.
   «Мы все знали, что это были места расположения концлагерей. Лишь в десятой партии, поступившей в ноябре 1943 года, впервые появилось золото, снятое с зубов. Количество такого золота становилось необычайно большим».
   Иногда коронки срывали еще до того, как людей приканчивали. Из секретного доклада начальника минской тюрьмы выяснилось, что после того, как он прибег к услугам еврейского дантиста, «у всех евреев были сняты или вырваны золотые мосты, коронки и пломбы. Это происходило обычно за час или за два до спецакции». Начальник тюрьмы отмечал, что из 516 немецких и русских евреев, казненных в его тюрьме в течение полутора месяцев весной 1943 года, у 336 были сняты золотые коронки и т. п.
   На Нюрнбергском процессе пресловутый Освальд Поль, начальник экономического отдела СС, который вел деловые операции для своего управления, подчеркивал, что доктор Функ, а также служащие и директора Рейхсбанка отлично знали происхождение вещей, которые они старались заложить в ломбард, чтобы получить под них деньги. Он довольно подробно описал «деловую сделку между Функом и СС относительно доставки в рейхсбанк ценностей, принадлежавших умершим евреям». Он припомнил разговор с вице-президентом банка доктором Эмилем Полем.
   «После этого разговора не осталось никаких сомнений, что предметы, которые поступали в рейхсбанк или которые предполагалось передать в рейхсбанк, принадлежали евреям, убитым в концлагерях. Такими предметами были перстни, часы, очки, золотые слитки, обручальные кольца, броши, булавки, золотые коронки и другие ценности».
   Итак, гитлеровцы отыскали свои месторождения и рудники, организовали собственные предприятия по добыче золота. И оказались в проигрыше. Причем не только потому, что война была проиграна и в Нюрнберге всплыли на свет божий все тонкости разработанной ими «технологии». Оказывается, если бы немецкие эксперты не поверили Габеру, еще пошевелили мозгами, у них была-таки принципиальная возможность получить золото из нетрадиционных, но природных источников.
   Попытка других исследователей – уже после окончания Второй мировой войны – разобраться в данной проблеме привела к новым открытиям. Оказалось, что золото не так уж редко, как следовало ожидать, исходя из его названия – редкий металл! В природе оно находится самородным в виде микроскопических включений в изверженных горных породах, кварце, шиферах и т. п. Выветривание таких золотоносных пород дает россыпи, содержащие золотой песок, а иногда и крупные самородки – их находили до 285 и даже весом 1350 килограммов! В целом же за всю историю цивилизации добыто более 50 тысяч тонн золота, то есть в среднем по 10 тонн в год. По подсчетам геохимиков, общее количество золота в литосфере (земной коре глубиной до 16 километров) составляет около 100 миллиардов тонн. Так что до полного исчерпания золотоносных пород еще далеко, хотя некоторые рудники истощаются (так случилось и с рейнскими).
   Но здесь возникает ряд интересных проблем. Наряду с постоянными открытиями новых месторождений драгоценного металла растут и области его применения.
   Кроме традиционного использования в ювелирном деле, металлическое золото и его сплавы применяются для изготовления лабораторных приборов, деталей аппаратов, а также для покрытия различных предметов из стекла, фарфора или металлов, в микроэлектронике, стоматологии, катализе (синтез воды из элементов (!), термическое разложение металлоорганических соединений и др.), фотографии и т. д. и т. п.
   Так или иначе, во всех этих процессах золото контактирует с водой или растворами, растворяется в воде и уносится водой. Таким образом, чем больше золота добывается и используется, тем более значительная его часть уносится реками в Мировой океан.
   И еще. Анализируя основные месторождения золота, нетрудно прийти к выводу, что подавляющее большинство из них расположено по долинам рек. Почему? Да потому, что реки постоянно вымывают, как бы «просеивают» микроскопические частички золота (механические взвеси и химические соединения) из золотоносных пород. Вымывают и уносят в океан. Ведь не все же удается добыть. Сюда следует добавить и миграцию золота с органическими соединениями в биосфере.
   Вывод из всех этих данных напрашивается сам собой: действительно, веками Мировой океан должен был накапливать золото!
   Что же говорит современная геохимия о количестве благородных металлов в морской воде?
 
* * *
 
   По данным советского академика А. Виноградова (1967 год), в среднем химическом составе воды океанов содержится 4х10–10 весовых процентов золота (0,000004 грамма на тонну в виде аниона 18). В литосфере золото содержится в среднем количестве 4,3х10–8 весовых процентов, то есть всего в 1000 раз больше, чем в океане!
   Но золотоносную жилу (подобную «рифам» Трансвааля, где концентрация золота 12–18 граммов на тонну) нужно еще найти, а морская вода – вот она, бери сколько хочешь, хоть все 5 миллионов тонн содержащегося в ней золота. И почему только золота? В морской воде растворены почти все элементы периодической таблицы Д. Менделеева и лишь 16 из них (не считая тех, данные о которых отсутствуют), причем наиболее редкие, в количествах меньших, чем золото.
   Выходит, нужно срочно и широким фронтом разворачивать золотодобычу из Мирового океана? Ведь со времен Ф. Габера такие работы практически не ведутся.
   Может быть, когда-нибудь все это и станет реальностью, но прежде необходимо решить ряд важных вопросов. Например, чем сорбировать золото из воды? Прекрасные перспективы сулят ионообменные смолы, или, как их часто называют, иониты. Эти чудесные синтетические вещества способны обменивать свои активные ионы (вернее, противоионы) на любые ионы равного знака, находящиеся в растворе, в том числе, естественно, и на ионы золота, которые затем легко восстанавливаются до металла. Уже существующие сейчас иониты позволяют сорбировать золото в количестве 200 процентов и серебро в количестве 300 процентов от веса самой смолы!
   Советские ученые А. Даванков и В. Лауфер разработали промышленную установку для извлечения золота (выход более 90 процентов) из сточных вод крупных ювелирных фабрик.
   Однако Мировой океан не перельешь из одной бочки в другую, пропуская через колонну с ионитом? Тут, видимо, понадобятся иные, еще более совершенные технологические решения. И они уже на подходе…
   Вот хотя бы одно из них.
   Исследователи давно обратили внимание, что живые существа – обитатели морей и океанов – имеют свойство накапливать в своих организмах определенные вещества. Скажем, устрица представляет собой настоящий кладезь меди, голотурии и асции накапливают ванадий, омары и мидии – кобальт… А вот некоторые виды планктона, диатомовые водоросли и ряд других микроорганизмов отдают предпочтение золоту. Так почему бы не сделать ставку на природных старателей?.. «
   Первые опыты обнадеживают. Исследователи отыскали микроорганизмы, панцири которых практически целиком состоят из благородного металла. Конечно, от лаборатории до промышленного производства – дорога достаточно длинная. Но, возможно, ее удастся сократить в свете последних научных открытий, сделанных американскими учеными.
   Редчайшее явление природы им удалось зафиксировать с помощью гидрофонов, использовавшихся ранее в системе слежения за советскими атомными субмаринами. Некоторые ученые полагают, что донная активность – это своего рода «сердцебиение» планеты. Обнаруженный процесс влияет на химической состав морской воды, на отложение ценных металлов, в том числе и золота.
   Речь идет о некой субстанции, похожей на вулканическую лаву, медленно вытекающую из недр планеты и растекающуюся по океанскому дну. Но все это происходит во мраке глубокой ночи, в недосягаемом оком подводном царстве, над которым царит убийственное давление многих тонно-километров. Вот почему эти процессы мало изучены и кажутся нам загадочными.
   Тем не менее такие попытки предпринимаются. Недавно ученые отправились на 50-метровом исследовательском судне «Макартур» в район замеченной вулканической активности и опустили в воду чувствительные детекторы. С их помощью им удалось не только взять пробы извергнутой из расселины жидкости, как оказалось весьма изобиловавшей бактериями и микробами, но и насыщенной разнообразными солями.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    Rambler's Top100       Рейтинг@Mail.ru